PREQS User Guide

Carol A. San Soucie

September 9, 1996

1 Introduction

This manual describes the usage, installation and basic structure of PREQS, a parallel Richards’
equation solver. Richards’ equation [11] models the physical situation of water flowing into a porous
medium containing both air and water [4]. The equation is given as,

% — V- (K(h)Vh) = f, in Q, (1)

where K(h) = ﬂ%mkr(h). Here, h is hydraulic head, 6 is water content, k() is the absolute
permeability tensor, k.(h) is the relative permeability, u is water viscosity, p is water density, g is
gravity, [is a water source term and € is the flow domain. Boundary conditions of the form,

o(z)(u-n)+v(z)h=~v(z,t),on T, (2)

are considered, where I' is the boundary of Q, u is the flux —K(h)Vh, n is an outward pointing,
unit, normal vector to I', & and v are functions of position only and « is a function of both position
and time.

PREQS uses a cell-centered finite difference scheme (or, equivalently, a lowest-order Raviart—
Thomas expanded mixed finite element approximation [1]) for discretizing (1). Backward Euler
is used for the time discretization, giving a fully implicit method. Application of these methods
results in a system of nonlinear discrete equations which must be solved at each time step. This
nonlinear system is solved with Newton’s method and an optional backtracking globalization tech-
nique with dynamic forcing term selection. Each Newton iteration requires the solution of a large,
nonsymmetric linear system to which a preconditioned GMRES method is applied. The system is
preconditioned with a Jacobi preconditioner.

2 Usage

The PREQS user interface is based on Philip T. Keenan’s kSeript package, a flexible application
scripting language. For a complete introduction to kSecript, see the kScript User Manual [8], or the
World Wide Web page at http://www.ticam.utexas.edu/users/keenan/. The kScript package
can be obtained from the Web site, and used as the front end to other applications, but it is subject
to the terms of the kScript copyright notice provided with the distribution and is not in the public
domain. The PREQS user interface was created with cmdGen [7], a C++ code generation tool
written by Keenan, and builds on the Keenan C+4 Foundation Class Library, version 2.5.

PREQS reads commands from an input file written in the kScript language. Before describing
the usage of the PREQS code, we present a brief summary of the core features of kScript.

2.1 kSeript

kScriptis a complete programming language with comments, numeric and string variables, looping,
branching and user defined commands. It includes predefined commands for online help, include
file handling, arithmetic calculations and string concatenation, and communication with the UNIX
shell. Applications can define additional commands and objects which enrich the vocabulary and
power of kScript. kScript is strongly typed and applications can add new data types as well.

For a complete and up-to-date list of commands, functions, types and objects available to the
user interface, run the program to access on-line help. Once kScript, or programs based on it such
as PREQS, is executed, type

help

to get started.

Commands specific to the PREQS program are listed below. Fach command’s name is followed
by a list of arguments. Most arguments consist of a type name and a descriptive name, enclosed
in angled brackets. These represent required arguments that must be of the stated type.

Arguments enclosed in square brackets are optional literal strings, typically prepositions. They
can be used to create English sentence-like scripts which are easy to read, or they can be omitted
with no change in the meaning of the script. Sometimes several alternatives are listed, separated
by a vertical bar (1). For example, the syntax of the set command is

[set] nameExpr name [tol=] expression expr
Both the name set and the equal sign are optional, so the five commands

set x to 3.14
set x = 3.14
x = 3.14

set x 3.14
x 3.14

all assign the same value to a variable named x, but the first three versions are easier for a human
reader to understand.

The keywords optional and required introduce alternative sets of arguments. Each set begins
with a string literal which, if encountered while parsing the command, signals that the remainder
of that clause will follow. Multiple cases can be separated by a vertical bar. In the required case,
one alternative must be selected; in the optional case, zero or one may he chosen.

The sequence keyword introduces an argument pattern which may be repeated multiple times.
A sequence argument can be an empty string ({}), a curly brace delimited list of one or more
instances of the pattern, or, a single instance without the surrounding curly braces.

In kScript, a space-delimited sharp or pound symbol (#) comments out the rest of the line
on which it occurs. Mathematical expressions must be written with no internal spaces. String
literals must be enclosed in curly braces, not quote marks. The curly braces can be nested and
within them only the percent sign (%) is special — all other text is recorded verbatim. In all other
contexts, white space (spaces, tabs, line breaks, and so on) serves only to delimit commands and
their arguments.

2.2 Variables and Commands

In this section we describe each of the variables and commands which comprise the PREQS user
interface. These variables and commands can be used throughout input files to set attributes of the
computational grid, the physical problem and solvers for the nonlinear and linear discrete problems.

Many commands take arithmetic or string expressions as arguments. Math expressions can mix
numbers, arithmetic and logical operators, and symbolic names. String expressions are enclosed
in curly braces and can expand references to other string or numeric variables by preceding their
names with a percent sign. Symbolic names can represent constant or variable values. Predefined
names are listed below; users can define additional ones using the define and set commands.

Some commands take an argument of type “ftype.” This argument is a predefined function
type (listed below) and is followed by two parameters, cl and c2. The possible choices for ftype
are,

1. constant

For all values of its arguments, a constant function will return the value cl.

2. vg_theta
Specifies the van Genuchten water content function [6],

0, — 0,
—+0,, (3)

"= T ey

where o = ¢l and m = ¢2.

3. vg_thetaDer
Specifies the derivative with respect to hydraulic head of the van Genuchten water content
function.

4. vg_relperm

Specifies the van Genuchten relative permeability function [6],

(1- el y?
1+ (ah)™)™

(1 + (ahy)7

ko (h) =

where o = ¢l and m = ¢2.

5. vg_relpermDer

Specifies the derivative with respect to hydraulic head of the van Genuchten relative perme-
ability function.

6. user

For user—defined functions, the user must specify a compiled routine which evaluates the
function for various arguments. The parameters cl and ¢2 allow some variability in the
run—time specification of this function.

In the next four sections, we discuss the input commands and variables used for setting up
a specific problem. Default values for variables are given in parentheses on the same line as the
variable’s name. Appendix A gives a sample input file along with a description of the problem and
parameters it sets.

2.2.1 Grid Input

The first group of variables and commands are those associated with grid input. Note that the
PREQS code runs three—dimensional problems. Lower dimensional problems should be modeled
by taking one division in the unused directions.
BoundingBox [(] <mathExpr xmin> <mathExpr ymin> <mathExpr zmin> [)][(]
<mathExpr xmax> <mathExpr ymax> <mathExpr zmax> [)]
Define the domain bounding box by specifying first the three coordinates of the left,
front, bottom corner, (xmin, ymin, zmin), then the coordinates of the right, back, top
corner (Xmax, ymax, zmax).

The variables xmin, ymin, zmin, xmax, ymax and zmax can only be changed through the
BoundingBox command. However, the user can see their values directly by echoing these variables.
The default bounding box for the computation is the unit cube.

xmin (0)
constant double: The left coordinate of the bounding box.

xmax (1)
constant double: The right coordinate of the bounding box.

ymin (0)
constant double: The front coordinate of the bounding box.

ymax (1)
constant double: The back coordinate of the bounding box.

zmin (0)
constant double: The bottom coordinate of the bounding box.

zmax (1)
constant double: The top coordinate of the bounding box.

The following commands require a specified direction in which to act. The keyword argument
specifies this direction and can be either x, y or z as described below.
direction
Keyword Type: Coordinate directions, x, y and z. Literal values are:

X
Left to right coordinate direction.
y
Front to back coordinate direction.
z

Bottom to top coordinate direction.

nProcDivisions [in] <keyword(direction) dir> [is] <mathExpr num>
Specify the number of processors in the coordinate directions.

nCoarseDivisions [in] <keyword(direction) dir> [is] <mathExpr num>
Specify the number of coarse divisions in the coordinate directions for the coarse grid.
This command is valid only when the coarse grid is uniform. The coarse grid must be
the same as or a refinement of the processor grid.

CoarseDivide <keyword(direction) dir> [at] <doubleArray vals>
Define a dividing point for subdomains in coordinate directions. Fach new dividing point
must be greater than the previously set dividing point and less than the domain boundary
for that direction. The coarse grid must be the same as or a refinement of the processor

grid.

nFineDivisions [in] <keyword(direction) dir> [is] <mathExpr num>
Specify the number of mesh cells in the coordinate directions for the fine grid. This
command is valid only when the fine grid is uniform. The fine grid must be the same as
or a refinement of the coarse grid.

FineDivide <keyword(direction) dir> [at] <doubleArray vals>
Define a dividing point for mesh cells in coordinate directions. Fach new dividing point
must be greater than the previously set dividing point and less than the domain boundary
for that direction. The fine grid must be the same as or a refinement of the coarse grid.

isUniformCoarse (1)
int: 1 if coarse mesh is divided into uniform subdomains, and 0 otherwise.

isUniformFine (1)
int: 1 if mesh is divided into uniform mesh cells, and 0 otherwise.

Distribute
Distribute the coarse mesh among processors.

As of the time this is written, only the fine grid is used in the computation. However, further
work will include two-level methods making use of both the coarse and fine grids.

2.2.2 Verification of Input

The next group are commands associated with printing out various characteristics of the problem
and grid.
PrintBoundingBox
Prints bounding box coordinates.

PrintProcDivisions
Prints the number of processors in each coordinate direction.

PrintCoarseDivisions
Prints the coarse grid divisions in each coordinate direction.

PrintFineDivisions
Prints the fine grid divisions in each coordinate direction.

VerifyGrid
Prints the bounding box, number of processors in each coordinate direction and coarse
and fine grid divisions in each direction.

showStatus
Prints input parameter information including parameters related to the physical proper-

ties of the problem being modeled.
dumpGrid
Prints the computational grid.

2.2.3 Problem Specification

The physical problem that is modeled is specified with the following group of variables and com-
mands.
SetSigma sequence { <keyword(direction) dir> <int side> <nameExpr ftype> }
Specifies the coefficient function for flux boundary conditions. Sigma is a function of
(z,y,2,1).

SetUpsilon sequence { <keyword(direction) dir> <int side> <nameExpr ftype> }
Specifies the coefficient function for hydraulic head boundary conditions. Upsilon is a
function of (z,y, z,1).

SetGamma sequence { <keyword(direction) dir> <int side> <nameExpr ftype> }
Specifies the right—hand—side function for boundary conditions. Gamma is a function of

(z,y,2,1).
SetF <nameExpr ftype>
Specifies the forcing term function. I is a function of (z,y, z,1).

SetPermTensor sequence { <int i> <int j> <nameExpr ftype> }
Specifies entries of the absolute permeability tensor. Entries are functions of (z,y, 2, 1).

SetInitH <nameExpr ftype>
Specifies the initial hydraulic head function. InitH is a function of (z,y, z, h).

SetSoln <nameExpr ftype>
Specifies the exact problem solution if one exists. The solution is a function of (z,y, z,1).

SetTheta <nameExpr ftype>
Specifies the water content function. Water content is a function of (z,y, z, h).

SetThetaDerivative <nameExpr ftype>
Specifies the derivative of the water content function. The water content derivative is a
function of (z,y,z,h).

SetRelPerm <nameExpr ftype>
Specifies the relative permeability function. The relative permeability is a function of

(z,y,2,h).

SetRelPermDerivative <nameExpr ftype>
Specifies the derivative of the relative permebility function. i The relative permeability
derivative is a function of (z,y, z, h).

porosity (0.36)
double: Porosity of the medium.

density (1 g/cm?)
double: Density of water.

viscosity (1.24 cP)

double: Viscosity of water in g/(sm) = 10Ns/m? = 10cP.
gravity

double: Gravitational constant = 9.80665 * m/(sec?).

satr (0.27)
double: Residual water saturation.

sats (0.99)
double: Maximal water saturation.

The file
user.C

gives a dummy definition of all the above functions. Even if the user chooses a non-user-defined
ftype, such as constant or one of the van Genuchten types, in the input file, the dummy definition
must be compiled. Functions which are user—defined can be defined in this file.

2.2.4 Solver Parameters

The last group of variables and commands sets various attributes of the nonlinear and linear discrete
system solvers.
verbosity (0)
int: 0, 1, 2, ... produce increasingly detailed debugging information.

nonlinTol (le-4)
double: Relative error tolerance to use as stopping criterion in nonlinear iterative solution
processes.

nonlinItMax (20)

int: Maximum number of iterations to allow in nonlinear iterative solution processes.
linTol (1e-8)

double: Relative error tolerance to use as stopping criterion in linear iterative solution

processes.

linItMax (20)
int: Maximum number of iterations to allow in linear iterative solution processes.

doBackTrack (1)
int: Set to 1 if backtracking globalization should be run for the nonlinear iteration.

Restrt (15)
int: Restart parameter for GMRES.

FinalTime (1)
double: Set the final simulation time in sec.

TimeStep (0.001)
double: Set the initial time step size.

MinStep (0.0001)
double: Set the minimum time step size.

MaxStep (0.1)
double: Set the maximum time step size.

isUniformTimeStep (1)
int: Set to 1 for uniform time steps, or 0 to select automatic time stepping.

hasExactSoln (0)
int: Set to 1 if problem has an exact solution specified.

Solve
Solve the partial differential equation.

3 Installation

In order to install PREQS, one should first obtain and install the Keenan C++ Foundation Class
Library (KFCL). This library comes as part of the kScript package and can be obtained at the
World Wide Web site, http://www.ticam.utexas.edu/users/keenan/.

In order to compile the KFCL, five environment variables must be set. These variables are,

e KEENAN_src
The root directory of the KFCL source code.

KEENAN_inc

The directory where all include files for the KFCL will be stored. The Makefiles will auto-
matically move these include files to the directory specified in this variable.

KEENAN_1ib
A directory where the compiled libraries will be placed in subdirectories of the form “ma-
chine/method.”
e KEENAN_make
The location of the master Makefile, Makefile-C++.

KSCRIPT_INC_DIR
A directory for “.k” files which are included in kSecript files.

The source for these libraries comes in a number of directories. Briefly, these are,

cont Array, vector and stack classes.

io Formatted I/0O, similar to the standard C4+4 I/O streams library.

ks kSecript routines, plus run time support classes, which handle command line argument parsing.
na Complex numbers, sorting routines, statistical routines and random number generators.

os Low level operating system interface and machine dependent function, memory management
routines.

parallel Platform specific functions as well as source for routines which define a generic commu-
nications library for use on distributed memory parallel machines.

scripts Scripts for compiling the source.

Once the source code is in place for these libraries, they can be compiled by by setting the
appropriate targets and platforms in the

Targets

file in the
KEENAN_src

directory. The “scripts” directory must be in the executable path.
Then, typing

Build method=‘‘method type’’

will compile the source code. The method refers to the compiler options such as checking, opti-
mization or debugging. The values it can take are,

debug Sets compiler options to be compatible with the debugger for each platform.

check Turns on some error checking, such as run time checking of array indices, but uses -O2 as
a compiler option.

opt Does not turn on extra array checking and uses -O2 as a compiler option.

The following directories will need to be created somewhere and pointed to with the above envi-
ronment variables,

e inc

e lib

lib/sparc

lib/sparc/check

lib/sparc/opt

lib/sparc/debug
e lib/paragon/... etc., for other machines

After compiling, the ks, io, cont and os libraries must be in the lib directory under the subdi-
rectory of the appropriate platform. This is where the PREQS makefile will look for them.

In order to compile the PREQS code, the above environment variables must be set. Then, in
the PREQS source directory, typing

make PREQS

will build the PREQS executable.

Currently, the communications supported in the KFCL/comm directory are: PVM, PICL, NX
(native Intel library) and a null library which conducts a no-opt for each communication call.
The null library is particularly useful for debugging on a single processor. The PREQS makefile
is currently set up to link in the null library. It can be changed to link in the PVM library by
changing PVMDIR, in the makefile to be the appropriate PVM directory and by putting in the
appropriate library in the libs variable.

To run the code, the number of processors must be specified with the command line argument
-nproc #, where # is the number of processors used in the computation. An input file must also
be given. The sample input file given in this document is contained in the file input.k. Thus, to
execute the code with this file, type

PREQS -nproc 1 input.k.

PREQS is primarily written in C4++4. However, the GMRES method and all routines it de-
pends on are written in FORTRAN. In order to mix these languages, naming conventions with
respect to underscores and capital letters must be specified. Currently, the code is set up for
IBM RS6000 systems. In order to change to another system such as a SUN, the file namecat.h
in KFCL/include.h must be modified. Also, declarations of the FORTRAN routine gmres and
the C4++ routine, matmult, called from gmres must be changed in the file step.h to appropriately
account for underscores.

4 Numerical Methods

This section gives a brief description of some of the numerical methods used in the PREQS code.

4.1 Discretization

The discretiztion scheme employed is a cell-centered finite difference scheme equivalent to the
expanded mixed method of Arbogast, Wheeler and Yotov [1], and analyzed for Richards’ equation
in [5].

We now describe the finite difference scheme employed in solving the system (1)-(2). We consider
a rectangular two or three dimensional domain, 2, with boundary Q. Let (.,.) denote the L%()
inner product, scalar and vector.

We will approximate the L? inner product with various quadrature rules, denoting these ap-
proximations by (.,.)r, where R = M, T and TM are application of the midpoint, trapezoidal and
trapezoidal by midpoint rules, respectively.

Let 0 = t° < ¢ < --- < tN = T be a given sequence of time steps, At" = " — "1,
At = max, At", and for ¢ = ¢(t,.), let ¢" = ¢(¢",.) with
(bn _ (bn—l
dip" = ———.
t IND

Let V = H(Q,div) = {v € (L*(Q))?: Vv € L}(Q)} and W = L}(Q).

We will consider a quasi-uniform triangulation of Q with mesh size h denoted by 7 and consisting
of rectangles in two dimensions or rectangular solids in three dimensions. We consider the lowest
order Raviart-Thomas-Nedelec space on bricks, [10,9]. Thus, on an element F € 7, we have

Vi(E) = {(anz1 + b1, aga + Bo, asrs + 53)T ta, B € R},
Wi(F) = {a:acR}.

For an element on the boundary, 0F N 02 # , we have the edge space,
AR(OF) ={a:a € R}.

We use the standard nodal basis, where for Vj, the nodes are at the midpoints of edges or faces
of the elements, and for W}, the nodes are at the centers of the elements. The nodes for A, are at
midpoints of edges.

The expanded mixed finite element method simultaneously approximates, H,U = —VH and
U= Ix(H)ﬁ This method with quadrature is given as follows. Find H" € W;,, U" € V},, U" € V,

10

and L™ € Ay for each n = 1,..., N satisfying,

(ded(H)", w)m + (V- U w) = (f" w), Vw € W, (5)
(U™, v)rm = (H",V-v)— (L",v-n)r, Vv € V}, (6)

(U™, v)rm = (K(H")U", v, ¥v €V}, (7)

(oU" -n,B)r = (v 4+ vL™, B)r, V5 € Ap. (8)

The system (5)-(8) reduces to a finite difference scheme for the hydraulic head approximations
at each of the cell centers. To see this, consider first equation (5) and let w = w;;, € Wy be the
basis function,

1, in cell 75k,
Wik = {)
0, otherwise.

Then,
n n—1 n Ui?il/%k B Uin—l/ij
Avi Ay Azpdip(0(H) — 0(H)G) = A" Ay; Azg(i)
Lit1/2

Un - Un
1 AtnA$2AZk(j+1/2k j—1/2k
AZ/j-|-1/2 (9)

Unr - pnr
‘|‘AtnA$2Ay](igk+1/2 2]k—1/2)
AZk-|-1/2

+ At"Az; Ay; Az [

Equation (6) gives U in terms of H"; in particular, choosing v = (Vig1/2j8,0,0), where v,y /551
is the basis function associated with node (2;41/2,¥;, 21),

ALM(QC —Ti_1/2) r € [Tis12,Tig12)Y € [Yi—1/2> Yjs1/2], 7 € [2h—1/25 Zr41/2],

Vidr/2ik = 4 o (8 = Tigape) @ € [Ripag Tigagel ¥ € Wm0, Yieagals 2 € [ho1g2, 2hi g2l

0 otherwise,
equation (6) reduces to (dropping temporal superscripts),

Hiji — Hipjk

(10)

i+1/2jk = Azitry:
If 2;11/2 is on the boundary, then the difference in hydraulic head values in equation (10) is replaced
by the difference between the head in the nearest cell and the multiplier & on the boundary closest
to the cell. The divisor for this difference will be half the cell width instead of Aw; /5. The «
term only plays a role on the outer boundary of the domain.

11

Equation (7) gives U in terms of U. Letting v be chosen as in (7) gives,

pkr)
KB/ 1725k

Ult1)26D%iq1/2 = 3 < [(F11,i41/2j-1/2k—1/2 + K111 /2541 /2k-1/2

+ 111 /2-1 /204172 + F11 g1 /2541 2641 /2) X (A UZ+1/2]k + A$Z+1Uz+1/2]k)
+ (F12,i41/2j—1/2k=1/2 T k12,41 /2j-1/2k41/2) X (Az; U” 12k T A$2+1UZ+1] 1/2k

() x(
+ (k12,i+1/2j+1/2k—1/2 + k12,i+1/2j+1/2k+1/2) x (Az; U2]+1/2k + A$Z+IUZ+1]+1/% (11)
() x(
() x(

+ (Fisiq1/2i-1/26—1/2 T F13.i1/2541/2k—1/2) X (A2, U”k 1/2+A$2+1Uz+1]k 1/2

)
)
)
+ (F13,i41/2j—1/2k+1/2 T K131 /2541 /2k41/2) X (Az; Umk+1/2 + A952-I—1U2-|-1]k-|-1/2)]

— <pk7°> [7%
= 1 i+1/2ik +1/25k"

The coefficient (%) 125k is approximated by upstream weighting as determined by the sign
i+1/2j
of U—|—1/2]k7

k, k.,

<p > :<” > , if ULy o <0,
K7 i1/25k B 7 iv15k
k, k. .

<,0_> = <,0_> , otherwise.
K7 it1/25k K7 gk

Lastly, equation (8) defines the multipliers a on the domain boundary. Let 8 = f3/5;; in
equation (8). Then we have,

=0 U)5k = Y1/2jk T V01 25k (12)

Combining equations (9)-(12) gives a finite difference method with a 19 point stencil for hy-
draulic head values.

In order to implement this finite difference scheme in parallel, each processor communicates
with up to 18 neighbors. To reduce this requirement, we add extra unknowns along the interfaces
between subdomains. Adding these unknowns allows for the normal fluxes at the interface points to
be discontinuous, which is a nonphysical condition. Thus, extra equations which enforce continuity
of normal fluxes at the interfaces are also introduced. Adding these extra unknowns corresponds to
adding a single hydraulic head at the interface points. This value will be “owned” by one processor
and communicated to the “non-owner” after updates. Let V; = V|q,. Then take, Vh =@dV.
The numerical scheme is defined as finding (H", fJ”, un, L") e (Wh,vh,vh,/&h) at each time step
n=1,..., N satisfying,

(d6(H"),w)+ (V- -U" w) =
(U™, v)a,rm

(U™, v)a, M

(U™ - n, B)r;ar =

Z(’ n7ﬁ)FI

7

), (13)
H", V- wv)q, —(L",v-n)r,, (14)
(H")T" V), 1, (15)
(16)
(17)

(
(
(K

(v +vL", B)mrinr,
0.

The extra unknowns provide a boundary condition for internal interfaces. Thus, the subdomains
are coupled only through shared boundaries, and each subdomain will only need to communicate
with neighbors sharing interfaces. Hence, subdomains communicate with up to 6 neighbors and
not 18.

4.2 Nonlinear Equation Solver

The above finite difference scheme results in a coupled system of nonlinear discrete equations.

These nonlinear equations are solved with a backtracking line search globalized inexact Newton’s
method [3, 2]. Algorithm 4.1 describes an inexact Newton method applied to the problem of finding
a root to the nonlinear equation F'(u) = 0 where J is the Jacobian of F.

Algorithm 4.1 1. Let u® be an initial guess.
2. For k =0,1,2,... until convergence, do

(a) Choose nt¥) € [0, 1).

b) Using some Krylov iterative method, compute a vector s(*) satisfyin
g g

JR) Z _) 4 (), (18)

with o
([(u)]]

(¢) Set ulFt1) = (k) 4 \(K) (k)

< p®).

The parameter 5 is chosen with a dynamic selection criteria, which reflects the agreement between
F and its linear model at the previous iteration,

_ N2
7®) = min{nmax, max{7", (U(k 1)) H (19)

where

| L B L R |
T [F =] '

(20)

The parameter A is chosen with a backtracking line-search globalization technique.

5 The PREQS Source Code

This section gives a brief overview of the code structure then discusses the contents of the PREQS
source code files.

5.1 Code Overview

In this section, brief comments are made on the grid set—up, then a discussion of the equation
solution driver function follows.

User input commands are used to set up the processor, coarse and fine grids, then distribute the
coarse and fine grids over the processors. Source code which supports these commands is located in
the files Actions.C and GridInputUtil.C. The grid is not distributed over the parallel machine
until the DistributeCmd function is executed.

13

The user command Solve designates that the user—specified equation should be solved. The
driver for the equation solve is the SolveCmd function in Actions.C. This function constructs
a ProblemState class which holds all information including the computational grid for the given
problem. The solve function then initializes the problem and starts a time loop. each iteration of
the time loop calls the step function.

The step function determines the time step size based on whether the user specified automatic
or uniform time stepping. It then calls calcProps which is a function that calculates physical
properties such as relative permeabilities, water contents and derivatives that are needed for the
nonlinear residual and linear system construction. After these properties are calculated, the step
function initializes the linear system matrix data structures and calls various setUp functions which
construct the linear system and nonlinear residual.

As mentioned in Section 4, the cell-centered finite difference scheme used in PREQS leads to a 19
point stencil. To reduce communication requirements, PREQS has extra hydraulic head unknowns
along interfaces between subdomains. Each of these unknowns is “owned” by a processor (the lower
number of two two processors that share the interface owns the unknowns along the interface).
The owner processor calculates properties associated with this unknown and updates the “sharer”
processor.

Physical data and unknowns are stored in the dataArray classes. Among its members, this class
has a doubleVector, lgvec, a 3-D doubleArray, intr, and an array of 2-D doubleArrays. The lgvec
vector holds all data for the interior cells and boundary unknowns. The intr array holds all data
for the interior subdomain cells. This array is aliased to the beginning of lgvec. The 2-D arrays
hold the boundary and interface data for the processors six boundaries. The owned unknowns on
the boundaries are aliased to consecutive entries in lgvec. Thus, lgvec can be passed to the linear
solver which expects a long vector of system unknowns.

The linear system matrix can be stored in blocks as can be seen in the matrices.C, matrices.h
and ProblemState.h files. The AA block holds the 19 point stencil entries for the interior unknown
dependencies on other interior unknowns. The AB block is actually an array of six 2-D arrays which
store dependencies of interior unknowns on subdomain boundary unknowns. The BA block is also
an array of six 2-D arrays storing the dependencies of the subdomain boundary unknowns on
the interior unknowns. Lastly, the BB block is an array of six bndryMat classes. This is a class
defined in matrices.h which stores boundary dependencies on other boundary unknowns. For
a given subdomain face, boundary on boundary dependencies can be expressed as an unknown
depending on itself (stored in the bndryMat.diag array) and as the boundary unknown depending
on unknowns on different faces (“around” an edge dependencies). These last dependencies are
stored in the bndryMat.cross array.

After the setUp functions conclude, step calls the newtonCheck function which checks for con-
vergence of the Newton method. If convergence is not attained, a while loop is started where
each iteration solves the linear system, backtracks if the user specified backtracking, constructs an
updated system and nonlinear residual and checks for convergence.

The linear system is solved with the GMRES method. This solver is coded in Fortran, but the
matrix—vector multiply and preconditioner (Jacobi for now) are coded in C++ to take advantage
of the dataArray class structure. The matrix—vector multiply is done in a function called matmult
contained in the matmult.C file. This function performs the multiply in block fashion and within
each block, applies a band multiply.

After step converges the Newton iteration, it calculates the L? error in the problem solution if
the user specified that an exact solution exists. Control is then returned to the SolveCmd function
which updates the time and loops until the final time is reached.

14

5.2

File Contents

The following is a brief summary of the source code files and what is in each one.

GridInputUtil.C Utility functions used for grid and problem input.
Functions included: ProcessDivisions, isRefinement, PartitionGrid, inputFn, PrintHFunc

InitMass.C Contains InitMass function which calculates the initial water mass in the system
- used in mass balance calculations. Some code is duplicated from the setUp routines.
Function included: InitMass

InitProblem.C Contains InitProblem function which initializes the pressure head, absolute
permeability, sigma and upsilon variables.
Function included: InitProblem

actions.C Contains definitions of input commands.

Functions included: BoundingBoxCmd, nProcDivisionsCmd, nCoarseDivisionsCmd, Coarse-
DivideCmd, nFineDivisionsCmd, FineDivideCmd, PrintBoundingBoxCmd, PrintProcDivi-
sionsCmd, PrintCoarseDivisionsCmd, PrintFineDivisionsCmd, Verify GridCmd, DistributeCmd,
SetSigmaCmd, SetUpsilonCmd, SetGammaCmd, SetFCmd, SetPermTensorCmd, SetInitHCmd,
SetSolnCmd, SetThetaCmd, SetThetaDerivativeCmd, SetRelPermCmd, SetRelPermDeriva-
tiveCmd, SolveCmd, ShowStatusCmd, dumpGridCmd

backtrack.C Performs the backtracking line-search globalization while updating reduction
factor used in linear system tolerance selection.
Function included: backtrack

cState.C Declares the global ProblemState pointer cState.

calcProps.C Calculates physical properties used in matrix set up - water content, relative
permeability and their derivatives.
Function included: calcProps

computeError.C Computes the discrete L? error for the case that an exact solution is known.
Function included: computeError

dataArray.C Implements dataArray, bndryArray and tensor classes.

direction.C Defines the numerical value for indexing x, y and z as coordinate directions.
Function included: initDirections

dumpGrid.C Prints global grid into file grid.eye in EYE format.
Function included: dumpGrid

feval.C Evaluates nonlinear function at a given pressure head.
Function included: feval

fn.C Implements data function classes, constant, van Genuchten and user defined.

gkns.C Global norm and dot product functions for dataArrays.
Functions included: gnorm and gdot.

globalVars.C Declares pointers to various global functions.
Functions included: globalVars::globalVars

15

grid.C Implementation of constructor and print function for grid class.
Functions included: grid::grid(), grid::PrintGrid()

jacobi.C Implementation of Jacobi preconditioner (diagonal scaling PC).
Functions included: jacobi

matmult.C Performs matrix-vector multiply and update, y = b*xy +a* Ax x.
Functions included: matmult, matmultAA, matmultAB, matmultBA, matmultBB.

matrices.C Implements 3-D and 2-D banded matrix classes as well as a specialized boundary
matrix class.

Functions included: constructor, resize, operator= and print for bandMat3d, bandMat2d and
bndryMat classes.

newtonCheck.C Checks for convergence of the Newton method.
Functions included: newtonCheck

noprec.C Performs no preconditioning action - just copies src to dest.
Functions included: noprec

printMatrix.C Prints the system matrix.
Functions included: printMatrix

problemState.C Constructor for the problemState class.
Functions included: problemState::problemState.

richardsMain.C This is the driver for the PREQS code.

Functions included: userMain

richardsPost.C Posts commands to the kScript tables.
Functions included: richardsCmdsPost

richardsPostObjs.C Posts objects to kSeript tables.
Functions included: richardsPostObjects

setUpBndMat.C Functions in this file calculate matrix and right-hand side entries correspond-
ing to flux values on subdomain boundary edges.
Functions included: setUpBndMatx, setUpBndMaty, set UpBndMatz.

set UpForceTerm.C Calculates contribution to right-hand-side of forcing term. Updates con-
tribution to mass from forcing term.
Function included: setUpForceTerm

set UpIntMat.C Calculates matrix entries from fluxes across edges interior to the subdomain.
Functions included: setUpIntMat

setUpTimeMat.C Calculates contribution to right-hand-side and diagonal matrix entries due
to the time derivative term. Also updates contribution to mass from time change in mass.
Functions included: setUpTimeMat

step.C Solves the nonlinear system for a given time.
Functions included: step

16

o transferData.C Transfers data in arrays pointed to in stufl from owner to sharer.
Functions included: transferData

o user.C Default definitions of input functions.
Functions included: userSigx0, userSigx1, userSigy0, userSigy1, userSigz0, userSigz1, user Upsx0,
user Upsx1, userUpsy0, userUpsy1l, userUpsz0, userUpszl, userGamx0, userGamx1, userGamy0,
userGamyl, userGamz0, userGamzl, userl', userlnitH, userSoln, userTheta, userRelPerm,
userThetaDer, userRelPermDer, userK11, userK12, userK13, userK22, userK23, userK33

o whereAmI.C This file contains a routine which finds the indices for the calling processor’s
coordinates in the processor grid as well as its neighbors.
Functions included: whereAml

o gmres.f Contains routines associated with the GMRIES iterative solver.
Functions included: gmres, update, basis

o gdblas.f Global parallel functions for use in gmres.
Functions included: Gdnorm2, Gddot

e dblas.f Double precision blas routines.

Header files contained in the PREQS code are: GridlnputUtil.h, InitProblem.h, cState.h,
dataArray.h, direction.h, fn.h, gl'ns.h, globalVars.h, grid.h, matrices.h, msgtypes.h, printMatrix.h,
problemState.h, richards.h, step.h, user.h, verbosity.h and whereAmI.h.

17

Appendix A: Test Program Input file

This section describes a sample input file used in the PREQS program. This sample file is given
below.

include /ul0/carol/richards/units.k

BoundingBox (0, 0, O) (100%cm, 100%cm, 20%cm) ;
nProcDivisions in x is 2
nProcDivisions in y is 2
nProcDivisions in z is 1
isUniformCoarse = 1
nCoarseDivisions in x is 2
nCoarseDivisions in y is 2
nCoarseDivisions in z is 2
1
nFineDivisions in x is 20
nFineDivisions in y is 20
nFineDivisions in z is 10

isUniformFine

Distribute
VerifyGrid

nonlinTol = 1le-8
nonlinItMax = 50
1linTol = 1le-7

Restrt = 50

linItMax = 300
doBackTrack = 0
MinStep = 0.0001*day
MaxStep = 6%*hr
TimeStep = 0.0005%day
FinalTime = 0.5%day
isUniformTimeStep = O
verbosity = 4
hasExactSoln = 0O
double hres = -734%*cm
SetSigma { x O constant 1
x 1 constant 1
y O constant 1
y 1 constant 1
Z 0 user 0 O

z 1 user 0 0 }
SetUpsilon { x O constant O
x 1 constant O
y O constant O
y 1 constant O

18

Z 0 user O
Z 1 user O
SetGamma { x O constant
constant

O O O O O

constant
constant O

user -1000*cm O
user -70*cm O }

N N < < ™
= O R, O K-

SetF constant O

SetPermTensor { 1 .33e-10*m*m
.33e-10*m*m
.33e-10*m*m
.33e-11*m*m
.33e-11*m*m

.33e-11*m*m }

.33e-12*m*m
.33e-12*m*m
.33e-12*m*m
.33e-13*m*m
.33e-13*m*m
.33e-13*m*m

user
user
user

[l = GV I V]

user

© W O W W W
© W O W W W

1
2
3
2 user
3
2 3
SetInitH user hres O

user

SetTheta vg_theta 0.0334 0.5

SetRelPerm vg_relperm 0.0334 0.5
SetThetaDerivative vg_thetaDer 0.0334 0.5
SetRelPermDerivative vg_relpermDer 0.0334 0.5

porosity = 0.368

density = 1xgm/cm”3
viscosity = 1.124%cP
gravity = 9.80665%m/sec”2

comp = 4.48-10*m"~2/nt
satr = 0.2771

sats = 0.98

Solve

The first line specifies that the program should include the file units.k. This file uses the cgs
units system as base and defines a number of units in terms of these. These unit definitions allow
PREQS input to be in any unit system, not even a consistent system. The BoundingBox command
specifies that the flow domain will be the rectangular solid where € [0,100], y € [0,100] and
z € [0,20]. The processor mesh is 2 x 2 x 1. The coarse grid is uniform with 2 divisions in each
coordinate direction. The fine grid is also uniform, but has 20 divisions in each of the z and y
directions and 10 divisions in the z direction. The user has then asked to distribute the grid over
the processors and verify the resulting grid.

The Newton method will iterate until a discrete /2 norm of the residual is less than le — 8
or until 50 iterations have executed, whichever comes first. The GMRES method will iterate
until a relative residual reduction of le — 7 is achieved or until 300 iterations have been executed.
The restart parameter is 50. The backtracking line—search globalization will not be applied. The
minimum time step is 0.0001 day, the maximum step is 6 hours and the initial time step is 0.0005
day. The final time is 0.5 day. Automatic time step selection will be used so that the time step

19

will grow after the initial step. The verbosity level is 4 and an exact solution is not specified.

A temporary variable hres is specified to be double with the value of -734 ¢cm. No flow boundary
conditions are set for all z and y external domain boundaries. User—specified Dirichlet conditions
are set for the domain top and bottom boundaries. The source/sink term is 0. The absolute
permeability tensor entries are all user—defined functions with two parameters. The file user.C
defines all user—defined functions for this case. Lastly, the initial hydraulic head function is also
specified to be a user—defined function.

The water content and relative permeability functions along with their derivatives are specified
to be of van Genuchten form with o = 0.0334 and m = 0.5. Physical constant are set as given.

The last of the file tells PREQS to solve the specified equation with the above defined parame-
ters.

Acknowledgements

I wish to thank Philip T. Keenan for his advice and help in the design of the matrix classes and in
the design of the matrix-vector multiply routines.

20

References

[1] T. ArRBOoGAST, M. F. WHEELER, AND I. YoTOV, Mized finite elements for elliptic problems
with tensor coefficients as cell-centered finite differences, Dept. Comp. Appl. Math. TR95-06,
Rice University, Houston, TX 77251, Mar. 1995. To appear SIAM J. Numer. Anal., 1997, vol.
34.

[2] S. C. EisensTAT AND H. F. WALKER, Globally convergent inexact Newton methods, STAM
J. Optimization, 4 (1994), pp. 393-422.

[3] ——, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comp., 17 (1996),
pp. 16-32.

[4] R. A. FrREEZE AND J. A. CHERRY, Groundwater, Prentice Hall, Inc., New Jersey, 1979.

[6] C. A. SAN SouclE, Mized finite element methods for variably saturated subsurface flow, Dept.
Comp. Appl. Math. TR96-10, Rice University, Houston, TX 77251, Apr. 1996.

[6] M. T. vAN GENUCHTEN, A closed form equation for predicting the hydraulic conductivity of
unsaturated soils, Soil Sci. Soc. Am. J., 44 (1980), pp. 892-898.

[7] P. T. KEENAN, ecmdGen 2.5 user manual, Texas Inst. for Comp. and Applied Math. 96-09,
University of Texas, Austin, TX, Feb. 1996.

[8] ——, kScript 2.5 user manual, Texas Inst. for Comp. and Applied Math. 96-08, University of
Texas, Austin, TX, Feb. 1996.

[9] J. NEDELEC, Mized finite elements in IR?, Numer. Math., 35 (1980), pp. 315-341.

[10] P. A. RaviarT AND J. M. THoMAS, A mized finite element method for second order elliptic
problems, in Mathematical Aspects of Finite Element Methods: Lecture Notes in Mathematics
606, I. Galligani and E. Magenes, eds., Berlin, 1977, Springer- Verlag, pp. 292-315.

[11] L. A. RicuARrDs, Capillary conduction of liquids through porous mediums, Physics, 1 (1931),
pp. 318-333.

21

